首页> 外文OA文献 >A modified distance regularized level set model for liver segmentation from CT images
【2h】

A modified distance regularized level set model for liver segmentation from CT images

机译:改进的距离正则化水平集模型,用于从CT图像进行肝脏分割

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Segmentation of organs from medical images is an active and interesting area of research. Liver segmentation incurs more challenges and difficulties compared with segmentation of other organs. In this paper we demonstrate a liver segmentation method for computer tomography images. We revisit the distance regularization level set (DRLS) model by deploying new balloon forces. These forces control the direction of the evolution and slow down the evolution process in regions that are associated with weak or without edges. The newly added balloon forces discourage the evolving contour from exceeding the liver boundary or leaking at a region that is associated with a weak edge, or does not have an edge. Our experimental results confirm that the method yields a satisfactory overall segmentation outcome. Comparing with the original DRLS model, our model is proven to be more effective in handling over-segmentation problems.
机译:从医学图像中分割器官是一个活跃而有趣的研究领域。与其他器官的分割相比,肝分割带来更多的挑战和困难。在本文中,我们演示了一种用于计算机断层扫描图像的肝脏分割方法。我们通过部署新的气球力来重新研究距离正则化水平集(DRLS)模型。这些力控制着演化的方向,并在与弱边缘或无边缘相关的区域中减慢了演化过程。新增加的球囊力阻止不断变化的轮廓超出肝脏边界或在与弱边缘或不具有边缘的区域泄漏。我们的实验结果证实,该方法可产生令人满意的整体分割结果。与原始的DRLS模型相比,我们的模型被证明在处理过度细分问题上更为有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号